Smart Contract Development
  • Introduction
    • What is a Transaction
    • Accounts and Signing
    • What is a smart contract
  • Learning Solidity
    • Introduction
    • Module 1
      • Variable Types
      • Variable Scope: State & Local variables
      • Global variables
      • Functions
        • View and Pure
        • Shadowing in Fuctions
      • Mapping
      • Require
      • Events
    • Project #1: Simple Registry
    • Module 2
      • Constructor
      • Data Location: Value & Reference
      • Interface
      • Import
        • Importing in Foundry
      • Inheritance
      • ERC-20
      • Checks-effect-interaction pattern
    • Project #2: Basic Vault
    • Module 3
      • Payable
      • Receive
      • Fallback
      • Returns
    • Project #3: ERC20+ETH Wrapper
    • Module 4
      • Immutable and Constant
      • Fixed-point Math
      • Abstract contracts
      • ERC-4626
      • Modifier + Inheritance +Ownable
      • Type
    • Project #4: Fractional Wrapper
    • Module 5
      • If-else
      • Libraries
        • TransferHelper
      • Chainlink Oracle
    • Project #5: Collateralized Vault
  • Compendium
    • Solidity Basics
      • Variable Types
      • Value Types
        • address
        • enum
      • Reference Types
        • strings
        • mappings
        • struct
        • Arrays
        • Multi-Dimensional arrays
      • Global Objects
      • Functions
        • Function types
        • Constructor Function
        • Transaction vs Call
        • Require, Revert, Assert
      • Function signature + selectors
      • Payable
        • Payable + withdraw
        • msg.value & payable functions
      • Receive
      • Fallback function (sol v 0.8)
        • Fallback function (sol v 0.6)
      • call, staticcall, delegatecall
    • Return & Events
    • Control Variable Visibility
    • Local Variables (Storage v Memory)
    • Data Location and Assignment Behaviors
    • Modifiers & Inheritance & Import
      • import styles
    • Interface & Abstract Contracts
    • ABI & Debugging
    • Libraries
    • Conditional(ternary) operators
    • Smart Contract Life-cycle
      • Pausing Smart Contracts
      • Destroying Smart Contracts
    • Merkle Trie and MPT
    • Merkle Tree Airdrop
  • Try & catch
  • Ethereum Signatures
  • EVM, Storage, Opcodes
    • EVM
    • Wei, Ether, Gas
    • Storage
    • ByteCode and Opcodes
    • Transaction costs & Execution costs
  • Reading txn input data
  • Data Representation
  • Yul
    • Yul
      • Intro
      • Basic operations
      • Storage Slots
      • Storage of Arrays and Mappings
      • Memory Operations
      • Memory: how solidity uses memory
      • Memory: Return, Require, Tuples and Keccak256
      • Memory: Logs and Events
      • Inter-contract calls
      • calldata
      • free memory pointer
    • Yul Exercises
      • read state variable
      • read mapping
      • iterate Array, Return Sum
    • memory-safe
  • Upgradable Contracts
    • Upgradability & Proxies
    • UUPS Example
    • Minimal Proxy Example
    • TPP Example
    • 🚧Diamond
      • On Storage
  • Gas Opt
    • Block Limit
    • gasLimit & min cost
    • Solidity Optimiser
    • Memory v calldata
    • Memory caching vs direct storage vs pointers
    • < vs <=
    • reverting early
    • X && Y, ||
    • constant and immutable
    • caching sload into mload
    • Syntactic Sugar
    • using unchecked w/o require
    • Compact Strings
    • Calling a view function
    • Custom errors over require
    • usage of this.
      • multiple address(this)
  • ERCs & EIPs
    • ERC-20.sol
      • Core functions
      • transfer()
      • transferFrom()
      • TLDR transfer vs transferFrom
    • Landing
      • ERC721.sol
      • EIP-721
        • LooksRare
        • Page 1
      • ERC-1271
      • EIP-2981
      • ERC-165
      • EIP-1167: Minimal Proxy Contract
    • VRFConsumerBase
    • UniswapV2Library
  • Yield Mentorship 2022
    • Projects
      • #1 Simple Registry
      • #2 Basic Vault
      • #3 ERC20+ETH Wrapper
        • setFailTransferTrue
      • #4 Fractional Wrapper
      • #5 Collateralized Vault
        • Process
        • Vault.sol
        • Testing
        • Chainlink Oracles
        • Pricing + Decimal scaling
        • Refactor for Simplicity
      • #9 Flash Loan Vault
        • Implementing ERC3156
        • Full code for lender
        • Ex-rate calculation
    • State Inheritance Testing
    • Testing w/ Mocks
    • Yield Style Guide
    • Github Actions
    • TransferHelper.sol
    • math logic + internal fn
    • Interfaces: IERC20
  • Foundry
    • Overview
    • Importing Contracts
    • Testing
      • stdError.arithmeticError
      • assume vs bound
      • Traces
      • label & console2
      • std-storage
  • Smart Contract Security
    • Damn Vulnerable Defi
      • 1. Unstoppable
      • 2. Naive receiver
      • 3. Truster
      • 4. Side Entrance
      • 5. The Rewarder
      • 6. Selfie
      • 7. Compromised
      • 8. Puppet
      • 9. Puppet V2
      • 10 - Free Rider
    • Merkle Tree: shortened proof attack
  • Fixed-Point Math
    • AMM Math
  • Solidity Patterns
    • checks-effects-interactions pattern
    • Router // batch
    • claimDelegate: stack unique owners
    • claimDelegate: cache previous user
  • Array: dup/ascending check
  • Deployment
    • Behind the Scenes
    • Interacting with External Contracts
    • Logging, Events, Solidity, Bloom Filter
  • Misc
    • Mnemonic Phrases
    • Bidul Ideas
  • Archive
    • Brownie Framework
      • Brownie basics
        • storing wallets in .env
        • Deployment to ganache
        • Interacting with contract
        • Unit Testing
        • Testnet deployment
        • Interacting w/ deployed contract
        • Brownie console
      • Brownie Advanced
        • Dependencies: import contracts
        • helpful_scripts.py
        • verify and publish
        • Forking and Mocking
        • Mocking
        • Forking
      • Testing
      • Scripts Framework
        • deploy.py
        • get_accounts
        • deploy_mocks()
        • fund_with_<token>()
      • Brownie Networks
    • Brownie Projects
      • SharedWallet
        • Multiple Beneficiaries
        • Common Code Contract
        • Adding Events
        • Renounce Ownership
        • Separate Files
      • Supply Chain
        • ItemManager()
        • Adding Events
        • Adding unique address to each item
      • Lottery
      • Aave - Lending and Borrowing
        • Approve & Deposit
        • Borrow
      • NFT
      • Advanced Collectible
        • adv_deploy() + Testing
        • Create Metadata
        • Setting the TokenURI
    • node npm
    • Ganache
    • Truffle
    • Remix
    • Installing Env
Powered by GitBook
On this page
  1. Compendium

Local Variables (Storage v Memory)

PreviousControl Variable VisibilityNextData Location and Assignment Behaviors

Last updated 2 years ago

Only complex data types (arrays and structs) default to storage inside functions, while all others default to memory.

Storage is a key/value store where keys and values are both 32 bytes. Memory is a byte-array. Memory starts off zero-size, but can be expanded in 32-byte chunks by simply accessing or storing memory at indices greater than its current size.

A consequence of this design difference is that storage is dynamic and memory is not.

Because arrays and structs are complex and could be of variable length, they are defaulted to storage, which has this key:value behaviour.

Simpler variables like bool, uint, etc are not variable in length, and are therefore defaulted to memory, which is . So, think of the design choice as a compromise between flexibility and cost.

It is possible to , but once created they cannot be resized (check out the Allocating Memory Arrays section).

For value types (booleans, integers, addresses ...) it's memory. For complex types (arrays, structs, maps) the default location depends on the context and can be by memory and storage keywords.

pragma solidity ^0.4.24;
contract A {
    uint t;

    function run() public returns(uint){
        uint startTime = 9;
        uint allowedTime = 7;

        uint v = startTime + allowedTime; // second test without v
        t = now + v;
        return t;
    }
}

Results

with v
  deploy 95237 gas
  func 41470 gas

without v
  deploy 95237 gas
  func 41470 gas
  • Compiling with the optimizer leads to the same bytecode and gas cost.

  • If the optimizer is not used, the compiler would produce more bytecode, and the gas cost would be higher.

Links

https://ethereum.stackexchange.com/questions/1232/difference-between-memory-and-storage
cheaper than storage
create memory arrays
overridden
Do intermediate memory variables cost gas?
https://medium.com/coinmonks/solidity-bits-storage-vs-memory-a54a650ea4ff
https://solidity-by-example.org/data-locations/